Algebraic multigrid methods based on compatible relaxation and energy minimization

نویسندگان

  • James Brannick
  • Ludmil Zikatanov
چکیده

This paper presents an adaptive algebraic multigrid method for the solution of positive definite linear systems arising from the discretizations of elliptic partial differential equations. The proposed method uses compatible relaxation to adaptively construct the set of coarse variables. The nonzero supports for the coarse-space basis is determined by approximation of the so-called two-level “ideal” interpolation operator. Then, an energy minimizing coarse basis is formed using an approach aimed to minimize the trace of the coarse-level operator. The presented approach maintains multigrid-like optimality, without the need for parameter tuning, for some problems where current algorithms exhibit degraded performance. Numerical experiments are presented that demonstrate the efficacy of the approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A General Interpolation Strategy for Algebraic Multigrid Using Energy Minimization

Algebraic multigrid methods solve sparse linear systems Ax = b by automatic construction of a multilevel hierarchy. This hierarchy is defined by grid transfer operators that must accurately capture algebraically smooth error relative to the relaxation method. We propose a methodology to improve grid transfers through energy minimization. The proposed strategy is applicable to Hermitian, non-Her...

متن کامل

Compatible Relaxation and Coarsening in Algebraic Multigrid

We introduce a coarsening algorithm for algebraic multigrid (AMG) based on the concept of compatible relaxation (CR). The algorithm is significantly different from standard methods, most notably because it does not rely on any notion of strength of connection. We study its behavior on a number of model problems, and evaluate the performance of an AMG algorithm that incorporates the coarsening a...

متن کامل

Multilevel Algebraic Elliptic Solvers

We survey some of the recent research in developing multilevel algebraic solvers for elliptic problems. A key concept is the design of a hierarchy of coarse spaces and related interpolation operators which together satisfy certain approximation and stability properties to ensure the rapid convergence of the resulting multigrid algorithms. We will discuss smoothed agglomeration methods, harmonic...

متن کامل

Smoothed aggregation multigrid solvers for high-order discontinuous Galerkin methods for elliptic problems

We develop a smoothed aggregation-based algebraic multigrid solver for high-order discontinuous Galerkin discretizations of the Poisson problem. Algebraic multigrid is a popular and effective method for solving the sparse linear systems that arise from discretizing partial differential equations. However, high-order discontinuous Galerkin discretizations have proved challenging for algebraic mu...

متن کامل

On Generalizing the Amg Framework

Abstract. We present a theory for algebraic multigrid (AMG) methods that allows for general smoothing processes and general coarsening approaches. The goal of the theory is to provide guidance in the development of new, more robust, AMG algorithms. In particular, we introduce several compatible relaxation methods and give theoretical justification for their use as tools for measuring the qualit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005